If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+16x+850=0
a = -16; b = 16; c = +850;
Δ = b2-4ac
Δ = 162-4·(-16)·850
Δ = 54656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54656}=\sqrt{64*854}=\sqrt{64}*\sqrt{854}=8\sqrt{854}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{854}}{2*-16}=\frac{-16-8\sqrt{854}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{854}}{2*-16}=\frac{-16+8\sqrt{854}}{-32} $
| |6-2x|=6 | | (x+1)^2-(x-1)^2-(4x-360)=(3x)^3 | | -3(t-3)+6t=7t-7 | | (3x-5)(4x+6)=0 | | 7x+3(2x-5)=5(2x-3)+3 | | 6x(x+7)=3(2x+1) | | 1,402.234+c=1932.321 | | 0.80x+66=13.2 | | 5−4+7x+1=6x+7 | | (4/5)g+2=6 | | 9y-30y+25y=0 | | (6x+2)+118=180 | | m+11.7=10.5 | | 0.80x+0.55(120)=0.40(33) | | x=5(2x+12)+2 | | 80=-16t^2+100t+5 | | 6x^2-5x+3=7 | | -2(t-15)=18 | | a+3a=2a-7 | | 5−4+7x+1=x+7 | | 180=48+x+44 | | 4=k-3/4 | | 600=2(70+w)+2 | | 5x-{x+3}=1/3{9x+18}-5 | | 0.80x+0.05(160)=0.40(48) | | 5−4+7x+1=3x+7 | | 180=48+x-44 | | 4.6-(-b)=-9 | | b-9+3b=14 | | 2y^2-5y-84=0 | | 4w-20=-4 | | t/2.9=4.5 |